Sunday, July 19, 2009

12 Volt Lamp Dimmer


Here is a 12 volt / 2 amp lamp dimmer that can be used to dim a standard 25 watt automobile brake or backup bulb by controlling the duty cycle of a as table 555 timer oscillator. When the wiper of the potentiometer is at the uppermost position, the capacitor will charge quickly through both 1K resistors and the diode, producing a short positive interval and long negative interval which dims the lamp to near darkness. When the potentiometer wiper is at the lowermost position, the capacitor will charge through both 1K resistors and the 50K potentiometer and discharge through the lower 1K resistor, producing a long positive interval and short negative interval which brightens the lamp to near full intensity. The duty cycle of the 200 Hz square wave can be varied from approximately 5% to 95%. The two circuits below illustrate connecting the lamp to either the positive or negative side of the supply.


[read here...]

QUAD II POWER AMPLIFIER

[read here...]

10 - 20Watt Guitar Amplifier


Parts:

P1______________4K7 Linear Potentiometer
P2_____________10K Log. Potentiometer

R1,R2__________68K 1/4W Resistors
R3____________220K 1/4W Resistor
R4,R6,R11_______4K7 1/4W Resistors
R5_____________27K 1/4W Resistor
R7______________1K 1/4W Resistor
R8______________3K3 1/2W Resistor
R9______________2K 1/2W Trimmer Cermet
R10___________470R 1/4W Resistor
R12_____________1K5 1/4W Resistor
R13___________470K 1/4W Resistor
R14____________33K 1/4W Resistor

C1____________100pF 63V Ceramic Capacitor
C2____________100nF 63V Polyester Capacitor
C3____________470μF 35V Electrolytic Capacitor
C4____________220nF 63V Polyester Capacitor (Optional, see Notes)
C5_____________47μF 25V Electrolytic Capacitor (Optional, see Notes)
C6______________1μF 63V Polyester Capacitor
C7,C8,C9,C10___47μF 25V Electrolytic Capacitors
C11____________47pF 63V Ceramic Capacitor
C12__________1000μF 35V Electrolytic Capacitor
C13__________2200μF 35V Electrolytic Capacitor

D1_____________5mm. Red LED
D2,D3________1N4004 400V 1A Diodes

Q1,Q2_________2N3819 General-purpose N-Channel FETs
Q3____________BC182 50V 200mA NPN Transistor
Q4____________BD135 45V 1.5A NPN Transistor (See Notes)
Q5____________BDX53A 60V 8A NPN Darlington Transistor
Q6____________BDX54A 60V 8A PNP Darlington Transistor

J1,J2________6.3mm. Mono Jack sockets

SW1____________1 pole 3 ways rotary switch (Optional, see Notes)
SW2____________SPST Mains switch

F1_____________1.6A Fuse with socket

T1_____________220V Primary, 48V Center-tapped Secondary 20 to 30VA Mains transformer

PL1____________Male Mains plug

SPKR___________One or more speakers wired in series or in parallel
Total resulting impedance: 8 or 4 Ohm
Minimum power handling: 20W





Circuit description:

The aim of this design is to reproduce a Combo amplifier of the type very common in the 'sixties and the 'seventies of the past century. It is well suited as a guitar amplifier but it will do a good job with any kind of electronic musical instrument or microphone.
5W power output was a common feature of these widespread devices due to the general adoption of a class A single-tube output stage (see the Vox AC-4 model).
Furthermore, nowadays we can do without the old-fashioned Vib-Trem feature frequently included in those designs.
The present circuit can deliver 10W of output power when driving an 8 Ohm load, or about 18W @ 4 Ohm.
It also features a two-FET preamplifier, two inputs with different sensitivity, a treble-cut control and an optional switch allowing overdrive or powerful treble-enhancement.
Technical data are quite impressive for so simple a design:

Sensitivity: 30mV input for 10W output
Frequency response: 40 to 20KHz -1dB
Total harmonic distortion @ 1KHz and 10KHz, 8 Ohm load: below 0.05% @ 1W, 0.08% @ 3.5W, 0.15% at the onset of clipping (about 10W).

Notes:

SW1 and related capacitors C4 & C5 are optional.

When SW1 slider is connected to C5 the overdrive feature is enabled.

When SW1 slider is connected to C4 the treble-enhancer is enabled.

C4 value can be varied from 100nF to 470nF to suit your treble-enhancement needs.

In all cases where Darlington transistors are used as the output devices it is essential that the sensing transistor (Q4) should be in as close thermal contact with the output transistors as possible. Therefore a TO126-case transistor type was chosen for easy bolting on the heatsink, very close to the output pair.

To set quiescent current, remove temporarily the Fuse F1 and insert the probes of an Avo-meter in the two leads of the fuse holder.

Set the volume control to the minimum and Trimmer R9 to its minimum resistance.

Power-on the circuit and adjust R9 to read a current drawing of about 25 to 30mA.

Wait about 15 minutes, watch if the current is varying and readjust if necessary.


http://www.electronics-lab.com/projects/audio/030/index.html
[read here...]

Wireless IR headphone transmitter


[read here...]

Wireless IR headphone receiver


[read here...]

Wednesday, July 8, 2009

AUDIO MICROPHONE PREAMPLIFIER - Single IC

This circuit will is useful if you have a microphone or a device that produces a low audio level and you want to connect it to a stereo or something. This circuit will boost it's output level.



Parts List:
Component:---Value:--------------Datasheet:--------Qty:

Resistor----------10 K----------------- Not Available-------03
Resistor-----------1 K------------------Not Available-------01
Resistor------ --100K to 1M Pot------- Not Available-------01
Capacitor--------0.1 uF-----------------Not Available-------01
Capacitor--------4.7 uF-----------------Not Available-------01
IC--------------LM358-------------------Available--------- 01
Microphone----Electret-----------------Not Available-------01

Bookmark and Share
[read here...]

100WATT CAR AMPLIFIER SCHEMATIC


Bookmark and Share
[read here...]

P400 hi-fi audio power amplifier




Markovich Srdjan
Email : s_markovich@yahoo.com

P400 caracteristic
Sinus power:382W (per chanal 8W load impedance)
Load impedance:2-16W
Frecfent caracteristic:5-100000Hz
Frecfent caracteristic:10-40000Hz (-1dB)
Damping factor:>150
Input impedance:60KW
Power supplay:±68V DC
Power consumption:10-450W


Protection caracteristic
Impendanse:2 x 47KW
DC time detection:200ms
DC detection:1V
Wait interval:5s
Power supplay:24V DC



P200 MAIN BOARD
RESISTORS
0 4 R10, R11, R14, R15
0.39 4W 4 R33, R34, R39, R40
4.7 1/4W 3 R31, R32, RPP2
10 1/4W 2 R41, R42
100 1/4W 3 R2, R4, R5
130 1/4W 2 R27, R29
150 1/4W 3 R18, R24, R26
220 1/4W 3 R28, R30, RPP1
270 1/4W 4 R35, R36, R37, R38
330 1/4W 2 R19, R25
1K 1/8W 1 R22
1K 1/8W 2 R3, R21
1K5 1/8W 4 R8, R9, R16, R17
2K2 1/8W 1 R20
5K6 1/8W 1 R23
10K 1/8W 1 R1
33K 1/8W 2 R12, R13
100K 1/8W 2 R6, R7
CONDESATORS
- 2 C7, C8
15p 160V 1 C6
50p 160V 2 C2, C3
200p 160V 2 C13, C14
.04u 160V 1 C4
0.1u 160V 1 C9
1u 16V 1 C1
100u 35V 1 C5
INDUCTIVITI
2.2uH 1 L
SEMICONDUCTORS
BA157 2 D1, D2
2N5401 TO-39 3 Q3, Q4, Q5
2N5550 TO-39 3 Q1, Q2, Q7
BC546 TO-39 2 Q6, Q8
BC556 TO-39 1 Q9
TIP41C TO-220 1 Q10
TIP42C TO-220 1 Q11
MJ15003 TO-3 2 Q13
MJ15004 TO-3 2 Q15






SPEAKER PROTECTION
RESISTORS
- 1 R10
- 1 RSTAB
470 1 R8
1k 2 R4,R9
2k2 1 RLED
8k2 1 R7
10k 1 R3
15k 1 R6
100k 2 R1,R2
1M2 1 R5
CONDENSATORS
10u 2 C3,C4
220u 2 C1,C2
SEMICONDUCTORS
BA157 4 D1,D2,D3,D4
BC183 TO-39 4 T1,T2,T4,T5
BC212 TO-39 1 T3
24v TO-220 1 STAB



[read here...]

Mosfet Amplifier - 240W / 400W



Parts List:
Component: Value: Qty:
Resistor 22K, 1W 01
Resistor 18K 02
Resistor 15K 02
Resistor 10K 02
Resistor 4.7K 02
Resistor 22 5W 02
Resistor 470 09
Resistor 220 01
Resistor 100 03
Resistor 0.33 5W 08
Capacitor 330uF, 16V 01
Capacitor 100uF, 160V 02
Capacitor 47uF, 160V 02
Capacitor 10uF, 50V 01
Capacitor 0.47uF, 100V 01
Capacitor 0.22uF, 100V 01
Capacitor 0.0012uF, 100V 01
Capacitor 18pF 01
Capacitor 10pF 02
Transistor BD681 01
Transistor BC546 04
Transistor MJE350 02
Transistor MJE340 03
Transistor 2SK1350 04
Transistor 2SJ201 04
Zener 15V, 1W 03
Zener 18V, 1W 01


Performance:

Output Power............................. 240W into 8ohm speakers, 400W into 4 ohm speakers
Frequency Responce................ 4Hz to 56kHz at -3dB points
Input Sensitivity....................... 1.2V RMS (for 240W into 8ohm speakers)
Harmonic Distortion................ <.07% from 20Hz to 10kHz, typically <.005% Signal To Noise Ratio............. -122dB unweighted (20Hz to 20kHz)-126dB A-weighted Damping Factor....................... >200 (for 8ohm loads)
Stability.................................... unconditional
[read here...]

Low cost 12VDC to 120/220VAC Inverter



This inverter will sufficiently power any of your 115VAC (or 220VAC)small appliances। T1 choice of amperage is yours to make, but if you can salvage a heavy-duty unit from somewhere, use it. The least expensive method to get a larger transformer would be to remove the old 2000v primary and then re-wind an old microwave transformer. Most of these transformers are rated 1KW or better. Your local TV or Electronics repair shop may have one or dig one up from the dumpster. Just in case you don't know, micro-wave transformers can keep their charge (via the connected electronics) for a long time, so be careful!R1 and R2 are 10 ohm, wire-wound, and at least 5 watts. Wattage/cooling should be increased accordingly if you decide to beef up the output. For D1 and D2 you can use any power diode like the 1N4002 to 1N4005.If you live in Europe, Australia, or any other country with a 220VAC system, the only different is the transformer. This particular circuit can be constructed to handle up to 1 KiloWatt (1000 watt). If there is enough interest, I can modify this circuit to include a crow-bar circuit, battery backup, or more output in watts, or everything.The power output is determined by transformer T1, and power transistors Q1 & Q2. Assume a transformer of about 15A and the chosen transistors of 2N3055 (15A) type, the inverter can supply about 300 watts with the parts shown. If you are good with electronics all you have to do is replace the 2N3055's and T1 accordingly for more output. It is imperative to mount Q1 and Q2 on large coolribs. If you intend to beef everything up with a couple kilowatts a standard (5") cooling fan will also be required. If this is the case, the 2N3771 power transistor is a good choice at 30Amps. NTE's replacement, NTE181, is an improved version of the 2N3771 and carries 90volts instead of the 40 volts and can dissipate 200W instead of 2N3771's 150W.It is mandatory to include at least one suitable fuse and enclose this project in the correct casing. To be really safe you may want to include a primary and secundary fuse for your own protection. You are dealing with 120VAC or 220VAC at respectible amperage so be careful. The powercord also needs to be secured to prevent accidents.The 68uF Tantalum capacitors were chosen for their endurance. Normal electrolytic capacitors would overheat and explode. Somesort of cooling fan inside the project case may be a good choice, I myself use a ball-bearing cpu-fan from an old computer. New they don't cost that much either, about 3 bucks or so.


Since T1, and Q1/Q2 are NOT part of the PCB, these few parts can easily be used on a piece of Vero or experimenters board. Radio Shack and Tandy have these boards also available at a very reasonable price. The receptacle(s) on T1's output will be part of the case (obviously). I Just a small note about the 12 Volt battery, this circuit and others similar can draw huge amounts of current and will drain your battery in hurry so don't let your battery go dead! That's why a wind/solar power combination would be an excellent future addition. For those interested in a PCB, I have included one below with a layout. As soon as I get my digital camera I will include pictures of the finished project.

[read here...]

Sunday, July 5, 2009

PA300 power amplifier (Elektor 11/1995)

Design by A. Riedl

Taken by themselves, the properties of the PA300 amplifier are not revolutionary. But taken in combination, they show something special: a robust 300 watt hi-fi power amplifier that is not too difficult to build.




There are several starting points to the design of a power amplifier: pure hi-fi without any compromise; simplicity and reliability; high output power. The design of the present amplifier is a mixture of these. The result is a unit that does not use esoteric components, is not too complex, and is fairly easily reproduced. In fact, it could well be named a 'Hi-fi public address amplifier'.
There will be a few eyebrows raised at the power output of 300 watts (into 4Ohm); it is true, of course, that in the average living room 30–40 W per channel is more than sufficient. However, peaks in the reproduced music may have a power of 10–20 times the average level. This means that some reserve power is desirable. Also, there are loudspeakers around with such a low efficiency that a lot more than 30–40W is needed. And, last but not least, there are many people who want an amplifier for rooms much larger than the average living room, such as an amateur music hall.

Fig. 1. With the exception of an IC at the input, the circuit of the PA300 amplifier is conventional.

Straightforward design
Since every amplifier contains a certain number of standard components, the circuit of Fig.1 will look pretty familiar to most audio enthusiasts. Two aspects may hit the eye: the higher than usual supply voltage and the presence of a couple of ics. The first is to be expected in view of the power output. One of the ics is not in the signal path and this immediately points to it being part of a protection circuit. What is unconventional is an IC in the input stage. Normally, this stage consists of a differential amplifier followed by a voltage amplifier of sorts, often also a differential amplifier, to drive the predriver stages. In the PA300, the entire input stage is contained in one ic, a Type NE5534 (IC1).
The internal circuit of IC1 is shown in the box on further on in this article. It may also be of interest to note that the NE5534 is found in nine out of every ten cd players(as amplifier in the analogue section). This is reflected in its price which is low. Its only drawback is that its supply voltage is far below that of the remainder of the amplifier.
This means an additional symmetrical supply of ±15 V. Moreover, it restricts the drive capability of the input stage. The supply requirement is easily met with the aid of a couple of zener diodes and resistors. The drive restriction means that the amplifier must provide a measure of voltage amplification after the input stage.

Circuit description
The input contains a high-pass filter, C5-R3 and a low-pass filter, R2-C6. The combination of these filters limits the bandwidth of the input stage to a realistic value: it is not necessary for signals well outside the audio range to be amplified – in fact, this may well give rise to difficulties.
Opamp IC1 is arranged as a differential amplifier; its non-inverting (+) input functions as the meeting point for the overall feedback. The feedback voltage, taken from junction D7-D8, is applied to junction R4-R5 via R9. Any necessary compensation is provided by C9, C12 and C14. The voltage amplification is determined by the ratio R9:R5, which in the present circuit is x40.
The output of IC1 is applied to drive stages T1 and T3 via R6. These transistors operate in Class A: the current drawn by them is set to 10 mA by voltage divider R10- R13 and their respective emitter resistors. Their voltage and current amplification is appreciable, which is as required for the link between the input and output stages. The output amplifier proper consists of drive stages T6 and T7 and power transistors T8, T9, T14, T15. which have been arranged as symmetrical power darlingtons. Because of the high power, the output transistors are connected in parallel. The types used can handle a collector current of 20 A and have a maximum dissipation of 250 W.
The output stages operate in Class AB to ensure a smooth transition between the n-p-n and p-n-p transistors, which prevents cross-over distortion. This requires a small current through the power transistors, even in the absence of an input signal. This current is provided by 'zener' transistor T2, which puts a small voltage on the bases of T6 and T7 so that these transistors just conduct in quiescent operation. The level of the quiescent current is set accurately with P1.
To ensure maximum thermal stability, transistors T1–T3 and T6–T7 are mounted on and the same heat sink. This keeps the quiescent current within certain limits. With high drive signals, this current can reach a high level, but when the input signal level drops, the current will diminish only slowly until it has reached its nominal value.
Diodes D7, D8 protect the output stages against possible counter voltages generated by the complex load. Resistor R30 and capacitor C17 form a Boucherot network to enhance the stability at high frequencies. Inductor L1 prevents any problems with capacitive loads (electrostatic loudspeakers). Resistor R29 ensures that the transfer of rectangular signals are not adversely affected by the inductor.

Protection circuits
As any reliable amplifier, the PA300 is provided with adequate protection measures.
These start with fuses F1 and F2, which guard against high currents in case of overload or short-circuits. Since even fast fuses are often not fast enough to prevent the power transistors giving up the ghost in such circumstances, an electronic short-circuit protection circuit, based on T4 and T5, has been provided. When, owing to an overload or short-circuit, very high currents begin to flow through resistors R25 and R27, the potential drop across these resistors will exceed the base-emitter threshold voltage of T4 and T5. These transistors then conduct and short-circuit or reduce drive signal at their bases. The output current then drops to zero. If a direct voltage appears at the output terminals, or the temperature of the heat sink rises unduly, relay Re1 removes the load from the output. The loudspeakers are also disconnected by the relay when the mains is switched on (power-on delay) to prevent annoying clicks and plops.
The circuits that make all this possible consist of dual comparator IC2, transistors T10–T13, and indicator diodes D13 and D14. They are powered by the 15 V line provided by zener diode D10 and resistor R42.
The 'ac' terminal on the PCB is linked to one of the secondary outputs on the mains transformer. As soon as the mains is switched on, an alternating voltage appears at that terminal, which is rectified by D12 and applied as a negative potential to T12 via R50. The transistor will then be cut off, so that C20 is charged via R36 and R44. As long as charging takes place, the inverting (+) input of comparator IC2b is low w.r.t. the non-inverting (–) input. The output of IC2b is also low, so that T13 is cut off and the relay is not energized. This state is indicated by the lighting of D13. When C20 has been charged fully, the comparator changes state, the relay is energized (whereupon D13 goes out) and the loudspeakers are connected to the output. When the mains is switched off, the relay is deenergized instantly, whereupon the loudspeakers are disconnected so that any switch-off noise is not audible.
The direct-voltage protection operates as follows. The output voltage is applied to T10 and T11 via potential divider R32-R34. Alternating voltages are short-circuited to ground by C18. However, direct voltages greater than +1.7 V or more negative than –4.8V switch on T10 or T11 immediately. This causes the +ve input of IC2a to be pulled down, whereupon this comparator changes state, T13 is cut off, and the relay is deenergized. This state is again indicated by the lighting of D13.
Strictly speaking, temperature protection is not necessary, but it offers that little bit extra security. The temperature sensor is R39, a ptc (positive temperature coefficient) type, which is located on the board in a position where it rests against the rectangular bracket. Owing to a rising temperature, the value of R39 increases until the potential at the –ve input of IC2a rises above the level at the +ve input set by divider R45-R46, whereupon the output of IC2a goes low. This causes IC2b to change state, whereupon T13 is cut off and the relay is deenergized. This time, the situation is indicated by the lighting of D14. The circuit has been designed to operate when the temperature of the heat sink rises above 70 °C. Any relay clatter may be obviated by reducing the value of R48.
The terminal marked 'CLIP' on the PCB is connected to the output of IC1 via R31. It serves to obtain an external overdrive indication, which may be a simple combination of a comparator and LED. Normally, this terminal is left open.

Power supply
As with most power amplifiers, the ±60 V power supply need not be regulated. Owing to the relatively high power output, the supply needs a fairly large mains transformer and corresponding smoothing capacitors—see Fig. 2. Note that the supply shown is for a mono amplifier; a stereo outfit needs two supplies.



Fig. 2. The power supply is straightforward, but can handle a large current. Voltage 'ac'serves as drive for the power-on delay circuit.

The transformer is a 625 VA type, and the smoothing capacitors are 10 000 µF, 100 V electrolytic types. The bridge rectifier needs to be mounted on a suitable heat sink or be mounted directly on the bottom cover of the metal enclosure.. The transformer needs two secondary windings, providing 42.5 V each. The prototype used a toroidal transformer with 2x40 V secondaries. The secondary winding of this type of transformer is easily extended: in the prototype 4 turns were added and this gave secondaries of 2x42.5 V.
The box 'Mains power-on delay' provides a gradual build-up of the mains voltage, which in a high-power amplifier is highly advisable. A suitable design was published in 305 Circuits (page 115).
The relay and associated drive circuit is intended to be connected to terminal 'ac' on the board, where it serves to power the power-on circuit. If a slight degradation of the amplifier performance is acceptable, this relay and circuit may be omitted and the PCB terminal connected directly to one of the transformer secondaries.


Fig. 4a. Component layout of the printed-circuit board for the 300 W power amplifier.


Fig. 4b. Track layout of the printed-circuit board for the 300 W power amplifier.



Fig. 3. This close-up photograph shows clearly how the transistors are fitted to the heat sink via a rectangular bracket.

Construction
Building the amplifier is surprisingly simple. The printed-circuit board in Fig. 4 is well laid out and provides ample room. Populating the board is as usual best started with the passive components, then the electrolytic capacitors, fuses and relay. There are no 'difficult' parts.
Circuits IC1 and IC2 are best mounted in appropriate sockets. Diodes D13 and D14 will, of course, have to be fitted on the front panel of the enclosure and are connected to the board by lengths of flexible circuit wire. Inductor L1 is a DIY component; i consists of 15 turns of 1 mm. dia. enamelled copper wire around R29 (not too tight!). Since most of the transistors are to be mounted on and the same heat sink, they are all located at one side of the board. However, they should first be fitted on a rectangular bracket, which is secured to the heat sink and the board—see Fig. 3. Note that the heat sink shown in this photograph proved too small when 4 Ohm loudspeakers were used. With 8 Ohm speakers, it was just about all right, but with full drive over sustained periods, the temperature protection circuits were actuated. If such situations are likely to be encountered, forced cooling must be used. As already stated, temperature sensor R39 should rest (with its flat surface) against the rectangular bracket. On the board, terminals 'A' and 'B' terminals to the left of R39 must be connected to 'A' and 'B' above IC2 with a twisted pair of lengths of insulated circuit wire as shown in Fig. 3. The points where to connect the loudspeaker leads and power lines are clearly marked on the board. Use the special flat AMP connectors for this purpose: these have large-surface contacts that can handle large currents. The loudspeaker cable should have a cross-sectional area of not less than 2.5 mm2.

Finally
How the amplifier and power supply are assembled is largely a question of individual taste and requirement. The two may be combined into a mono amplifier, or two each may be built into a stereo amplifier unit. Our preference is for mono amplifiers, since these run the least risk of earth loops and the difficulties associated with those. It is advisable to make the '0' of the supply the centre of the earth connections of the electrolytic capacitors and the centre tap of the transformer.
The single earthing point on the supply and the board must be connected to the enclosure earth by a short, heavy-duty cable. This means that the input socket must be an insulated type. This socket must be linked to the input on the board via screened cable.
To test the amplifier, turn P1 fully anticlockwise and switch on the mains. After the output relay has been energized, set the quiescent current. This is done by connecting a multimeter (direct mV range) across one of resistors R25–R28 and adjusting P1 until the meter reads 27 mV (which corresponds to a current of 100 mA through each of the four power transistors). Leave the amplifier on for an hour or so and then check the voltage again: adjust P1 as required.

LOOK... PA600

[read here...]

MosFet Audio Amplifier 60W into 8 Ohm load

High Quality, powerful unit: 90W into 4 Ohm load


Circuit diagram:

Parts:
R1______________47K 1/4W Resistor
R2_______________4K7 1/4W Resistor
R3______________22K 1/4W Resistor
R4_______________1K 1/4W Resistor
R5,R12,R13_____330R 1/4W Resistors
R6_______________1K5 1/4W Resistor
R7______________15K 1/4W Resistor
R8______________33K 1/4W Resistor
R9_____________150K 1/4W Resistor
R10____________500R 1/2W Trimmer Cermet
R11_____________39R 1/4W Resistor
R14,R15___________R33 2.5W Resistors
R16_____________10R 2.5W Resistor
R17_______________R22 5W Resistor (wirewound)

C1_____________470nF 63V Polyester Capacitor
C2_____________470pF 63V Polystyrene or ceramic Capacitor
C3______________47µF 63V Electrolytic Capacitor
C4,C8,C9,C11___100nF 63V Polyester Capacitors
C5______________10pF 63V Polystyrene or ceramic Capacitor
C6_______________1µF 63V Polyester Capacitor
C7,C10_________100µF 63V Electrolytic Capacitors

D1___________1N4002 100V 1A Diode
D2_____________5mm. Red LED

Q1,Q2,Q4_____MPSA43 200V 500mA NPN Transistors
Q3,Q5________BC546 65V 100mA NPN Transistors
Q6___________MJE340 200V 500mA NPN Transistor
Q7___________MJE350 200V 500mA PNP Transistor
Q8___________IRFP240 200V 20A N-Channel Hexfet Transistor
Q9___________IRFP9240 200V 12A P-Channel Hexfet Transistor

Power supply circuit diagram:


Parts:
R1_______________3K9 1W Resistor

C1,C2_________4700µF 63V Electrolytic Capacitors (See Notes)
C3,C4__________100nF 63V Polyester Capacitors

D1_____________400V 8A Diode bridge
D2_____________5mm. Red LED

F1,F2__________4A Fuses with sockets

T1_____________230V or 115V Primary, 30+30V Secondary 160VA Mains transformer

PL1____________Male Mains plug

SW1____________SPST Mains switch


To celebrate the hundredth design posted to this website, and to fulfil the requests of many correspondents wanting an amplifier more powerful than the 25W MosFet, a 60 - 90W High Quality power amplifier design is presented here.
Circuit topology is about the same of the above mentioned amplifier, but the extremely rugged IRFP240 and IRFP9240 MosFet devices are used as the output pair, and well renowned high voltage Motorola's transistors are employed in the preceding stages.
The supply rails voltage was kept prudentially at the rather low value of + and - 40V. For those wishing to experiment, the supply rails voltage could be raised to + and - 50V maximum, allowing the amplifier to approach the 100W into 8 Ohm target: enjoy!
A matching, discrete components, Modular Preamplifier design is available here: Modular Audio Preamplifier.
Notes:
• In the original circuit, a three-diode string was wired in series to R10. Two of these diodes are now replaced by a red LED in order to achieve improved quiescent current stability over a larger temperature range. Thanks to David Edwards of LedeAudio for this suggestion.
• A small, U-shaped heatsink must be fitted to Q6 & Q7.
• Q8 & Q9 must be mounted on large heatsinks.
• Quiescent current can be measured by means of an Avo-meter wired in series to the positive supply rail and no input signal.
• Set the Trimmer R10 to its minimum resistance.
• Power-on the amplifier and adjust R10 to read a current drawing of about 120 - 130mA.
• Wait about 15 minutes, watch if the current is varying and readjust if necessary.
• The value suggested for C1 and C2 in the Power Supply Parts List is the minimum required for a mono amplifier. For optimum performance and in stereo configurations, this value should be increased: 10000µF is a good compromise.
• A correct grounding is very important to eliminate hum and ground loops. Connect to the same point the ground sides of R1, R3, C2, C3 and C4 and the ground input wire. Connect R7 and C7 to C11 to output ground. Then connect separately the input and output grounds to the power supply ground.

Technical data:

Output power:

60 Watt RMS @ 8 Ohm (1KHz sinewave) - 90W RMS @ 4 Ohm
Sensitivity:
1V RMS input for 58W output
Frequency response:
30Hz to 20KHz -1dB
Total harmonic distortion @ 1KHz:
1W 0.003% 10W 0.006% 20W 0.01% 40W 0.013% 60W 0.018%
Total harmonic distortion @10KHz:
1W 0.005% 10W 0.02% 20W 0.03% 40W 0.06% 60W 0.09%
[read here...]